дробный модуль - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

дробный модуль - traduction vers russe

Циклический модуль; Неразложимый модуль; Левый модуль; Правый модуль; Вполне разложимый модуль; Гомоморфизм модулей; Фактормодуль

дробный модуль      
( производный модуль, составляющий часть основного модуля; устанавливается умножением основного модуля на дробное число для назначения относительно малых размеров )
sous-module; submodule; module fractionnel
модуль продольной упругости         
ФИЗИЧЕСКАЯ ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ СВОЙСТВА МАТЕРИАЛА СОПРОТИВЛЯТЬСЯ РАСТЯЖЕНИЮ, СЖАТИЮ ПРИ УПРУГОЙ ДЕФОРМАЦИИ
Юнга модуль; Модуль продольной упругости; Продольной упругости модуль; Модуль упругости продольной; Модуль нормальной упругости
coefficient d'élasticité longitudinale
модуль Юнга         
ФИЗИЧЕСКАЯ ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ СВОЙСТВА МАТЕРИАЛА СОПРОТИВЛЯТЬСЯ РАСТЯЖЕНИЮ, СЖАТИЮ ПРИ УПРУГОЙ ДЕФОРМАЦИИ
Юнга модуль; Модуль продольной упругости; Продольной упругости модуль; Модуль упругости продольной; Модуль нормальной упругости
module (d')Joung

Définition

ПРОДОЛЬНОЙ УПРУГОСТИ МОДУЛЬ
см. Модули упругости.

Wikipédia

Модуль над кольцом

Мо́дуль над кольцо́м — обобщение понятия векторного пространства с полей на кольца. Одно из основных понятий общей алгебры.

Модули позволяют адаптировать на многие алгебраические структуры стандартные понятия линейной алгебры, такие как базис и линейное отображение, а также предоставляют единообразный язык для работы с такими структурами. Например, модули над кольцом целых чисел Z {\displaystyle \mathbb {Z} } — это в точности абелевы группы, а модули над кольцом многочленов k [ x ] {\displaystyle k[x]} над некоторым полем k {\displaystyle k} — в точности векторные пространства над k {\displaystyle k} с фиксированным линейным оператором.

Понятие модуля лежит в основе коммутативной алгебры, которая играет важную роль в различных областях математики, таких как алгебраическая геометрия, гомологическая алгебра и теория представлений.